115. X-Ray Structure Analyses of Alkyl-Substituted N-Acryloyl- and N-Crotonoyltoluenesultams¹)

by Gérald Bernardinelli*, Christian Chapuis²)*, Arend J. Kingma²), and Martin Wills²)

Département de Chimie Organique et Laboratoire de cristallographie Université de Genève, CH-1211 Genève 4

Dedicated to the memory of Professor Wolfgang Oppolzer

(14. IV. 97)

The X-ray crystal-structure analyses of two N-enoyl-toluenesultam derivatives 1 are reported. The structural differences with their bornanesultam analogues 2 as well as stereochemical aspects with respect to their [4 + 2] and [3 + 2] cycloadditions are discussed.

The preparation as well as the [4 + 2] and [3 + 2] cycloadditions of N-enoyltoluenesultams (-)-1a,b have been recently reported [1] [2]³), simultaneously with the α -alkylation and aldolization of N-acyl derivatives [4]. The X-ray structure analyses of the camphor analogues (-)-2a,b [5] [6] have been extensively used to rationalize their reactive conformations [7-9]. Both bornane [6] and toluenesultam auxiliaries [10] have been speculatively compared to a disguised C_2 -symmetrical 2,5-dimethylpyrrolidine system [8], where the approach on the enoyl side chain is sterically disfavoured either by the C-skeleton in the SO₂/C(O)-syn,C(O)/C=C-s-cis conformation (syn-s-cis) or by the O(1) atom in the anti-s-cis arrangement [6] [8]. We thought it useful to present the crystallographic structure analyses of (-)-1a and (+)-1b⁴), in view of their very recently outlined structural differences with (-)-2a,b [9].

¹) Derived from saccharine (= 1,2-benzoisothiazol-3(2H)-one, 1,1-dioxide).

³) For recent reviews on asymmetric [4 + 2] and [3 + 2] intermolecular cycloadditions, see [3].

²) Present addresses: C.C., Firmenich SA, Corporate Research Division, P.O.B. 239, CH-1211 Geneva 8; A. J. K., BASF AG, Marketing Speciality Chemicals I, ESA/ET-J 550, D-67056 Ludwigshafen; M. W., Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.

⁴) For convenience, the arbitrary atom labels in **1a,b** are the same; for systematic names, see Exper. Part.

In both structures (-)-1a and (+)-1b, the *N*-enoyl side chain shows a typical *anti-s-cis* conformation ((-)-1a: S-N-C=O 148.8(4)°, O=C-C=C - 11.5(8)°; (+)-1b: S-N-C=O - 161.7(5)°, O=C-C=C - 13(1)°) as already observed for (-)-2a,b, although, for an identical absolute configuration, their bornane analogues have an opposite sign of the dihedral angle around the $C(O)-C(\alpha)$ bond ((-)-2a,b: O=C-C=C - 1.0(9)° [5]; -6.1(8)° [6]). Oppolzer had suggested that the twisting of the dienophile around this bond might be important for the stereocontrol [8] [11], although no evidence of this influence could be found by recent PM3 calculations [9].

Figure. ORTEP Diagram of (-)-la (top) and (+)-lb (bottom) with atom numbering (arbitrary). Ellipsoids are represented at the 40% probability level.

The *N*-acylbornanesultam derivatives (see 2) systematically show a pseudoequatorial orientation for the C(2)–C(3) and S=O(2) bonds. For example, for (–)-2a,b, the S–N–C(2)–C(3) and O(2)–S–N–C(2) dihedral angles are 144.2(4) and 142.4(4)°, and -131.1(4)° and -125.9(4)°, respectively. This results from the *cis*-fused bicyclic fivemembered rigidified ring system as well as from the steric pressure of the Me(8) group on the O(2) in the bornanesultam skeleton. Indeed, in a pseudoaxial orientation, the O(2) atom would be much closer to Me(8) than the 3.446(9) and 3.230(9) Å observed in (-)-2a,b, respectively (for comparison, the distance between O(2) and C(12) in (-)-1a is 3.312(6) Å). This characteristic is not always respected in toluenesultams, since the flexible C(8) atom is not integrated in a ring, and because of the S-adjacent C(1) atom which is substituted and part of a benzene moiety. As a consequence, the aromatic ring exerts a gauche interaction on both pseudoequatorial alkyl and S=O(2) substituents and, to minimize the steric repulsion, tends to direct them in a pseudoaxial direction. For large alkyl groups, this results in the loss of Curran's postulated C_2 symmetry existing in (-)-2a,b [8]. This effect is particularly important for (-)-1a, where the t-Bu and S=O(2) substituents are frankly pseudoaxial (see Table 1), whilst the sterically less demanding Me substituent in (+)-1b is oriented in between the pseudoaxial $(S-N-C(7)-C(8) ca. 100^{\circ})$ and the pseudoequatorial $(ca. 130^{\circ})$ position. The aromatic ring is practically bisecting the O(1)=S=O(2) angle in the latter case (see Table 1).

	(-)-la	(+)-1b		(-)-la	(+)-1b
C(1) - C(6)	1.376(6)	1.377(8)	O(2)-S-N	111.2(2)	111.3(3)
C(6)-C(7)	1.511(6)	1.489(9)	O(1) - S - C(1)	111.7(2)	112.0(3)
C(7) - C(8)	1.557(6)	1.51(1)	O(2) - S - C(1)	111.7(2)	112.1(3)
C(7)-N	1.496(5)	1.470(8)	N-S-C(1)	93.0(2)	93.5(3)
N-S	1.682(3)	1.671(5)	C(7) - N - C(9)	119.0(3)	120.5(5)
S-O(1)	1.432(3)	1.418(5)	C(9)-N-S	122.7(3)	123.2(5)
S-O(2)	1.425(3)	1.417(5)	C(7)-N-S	113.2(2)	114.6(4)
N-C(9)	1.414(6)	1.40(1)	O(3) - C(9) - N	119.2(4)	118.2(6)
C(9)O(3)	1.201(6)	1.219(9)	O(3) - C(9) - C(10)	124.0(4)	124.0(7)
C(9) - C(10)	1.463(7)	1.45(1)	N-C(9)-C(10)	116.7(4)	117.7(6)
C(10) - C(11)	1.296(7)	1.30(1)	C(9) - C(10) - C(11)	120.7(5)	121.1(7)
C(1) - C(6) - C(7)	114.3(4)	115.5(6)	O(1) - S - N - C(7)	129.9(3)	-112.1(5)
C(6) - C(7) - N	104.6(3)	105.7(5)	O(2) - S - N - C(7)	-99.2(3)	118.2(5)
S - C(1) - C(6)	111.6(3)	110.6(5)	S-N-C(7)-C(8)	106.2(3)	-125.3(5)
O(1) - S - O(2)	116.6(2)	115.8(3)	C(2)-C(1)-S-O(1)	56.9(5)	- 68.4(7)
O(1)-S-N	110.2(2)	110.0(3)	C(2)-C(1)-S-O(2)	-75.7(5)	63.6(7)

Table 1. Selected Bond Lengths [Å] and Angles [°] for (-)-1a and (+)-1b

Another important feature of the cyclic sultams is the pyramidalization of the N-atom⁵) and its indubitable correlation observed with respect to the S-N-C=O dihedral angle [9]. The N-lone pair (lp) is believed to be anomerically directed and stabilized, in the absence of major steric interactions, by the *anti*-periplanar S=O bond [9] [14], although, for N-acylbornanesultams, neither systematic lengthening of the S-N nor shortening of the S=O(1) bond lengths could be demonstrated [14]. According to this hypothesis, one would expect the N-lone pair to be *anti*-periplanar to the pseudoaxial S=O(2) bond in (-)-1a, but this would bring the N-enoyl chain close to both pseudoax-

⁵) For planar and pyramidal acyclic sultam X-ray structure analyses, see [12] and [13], respectively.

ial substituents, thus resulting in a strong steric repulsion⁶). For this reason, the N-atom remains pyramidalized in the usual way ((-)-1a: $\Delta h N = 0.198(4) \text{ Å}$; (+)-1b: $\Delta h N = 0.112(7) \text{ Å}$), similarly to the N-enoylbornanesultam analogues (-)-2a,b.

In conclusion, the structural differences between N-enoyltoluene- and N-enoylbornanesultams are mainly due to the possible loss of the pseudo- C_2 symmetry. This results in a decrease of the stereoselectivity observed for the uncatalysed [4 + 2] cycloadditions of cyclopentadiene to (-)-1a,b at 21° (51% d.e. [1a]; 43% d.e., 75% endo, 57% yield) as compared to (-)-2a,b (66% d.e. [16]; 52% d.e. [16])⁷). In the case of bornanesultams (-)-2a,b, the steric approach is systematically directed onto the C(α)-re face for both synand anti-s-cis conformers, whilst this should be only the case for the highly reactive syn-s-cis (-)-1a conformer [14]⁸). Indeed, intuitively, according to Curran's postulate, a steric $C(\alpha)$ -si approach would be expected for (-)-1a in the *anti*-s-cis conformation⁹). Due to the small size of the Me substituent, resulting in a weaker gauche interaction with the aromatic ring and thus in a less pronounced C(8)/O(2) pseudodiaxial conformation, (-)-1b represents an intermediate case. Furthermore, as a result of the observed pyramidalization, the weak stereoelectronic preferred interaction 10 is no longer mismatching the steric effect in the *anti*-s-cis (-)-**1a**, **b** conformers, in contrast to (-)-**2a**, **b** [9] [14] [19]. Supplementary X-ray structure analyses from cycloadducts derived from $(-)-\mathbf{1a},\mathbf{b}^6$, will be presented in due course.

Experimental Part

X-Ray Structure Determination of (-)-(3R)-3-(tert-Butyl)-2,3-dihydro-2-(1-oxoprop-2-enyl)-1,2-benzisothiazole 1,1-Dioxide ((-)-1a) and (+)-(3S)-2,3-Dihydro-3-methyl-2-[(E)-1-oxobut-2-enyl]-1,2-benzisothiazole1,1-Dioxide ((+)-1b). Suitable crystals were grown from hexane/Et₂O and EtOH soln., resp. Cell dimensions and

⁶) For two X-ray structure analyses of cycloadducts with inverted N-pyramidalization, see [1b] for (3*R*)-*N*-[(1,2-dimethylcyclohex-3-en-1-yl)carbonyl]-3-methyltoluenesultam (= (3*R*)-2-[(1,2-dimethylcyclohex-3-en-1-yl)carbonyl]-2,3-dihydro-3-methyl-1,2-benzisothiazol 1,1-dioxide; ΔhN = -0.06(2) Å, O(2)-S-N-lp 177.6(9)°) and [15] for (3*R*) *N*-[(1,2-dimethylcyclohex-4-en-1-yl)carbonyl]-2,3-dihydro-3-methyl-1,2-benzisothiazol 1,1-dioxide; ΔhN = -0.088(5) and 0.036(5) Å, O(1)-S-N-C(7) 136.0(3) and 139.0(3)°, O(2)-S-N-C(7) -91.6(3) and -89.0(3)°, S-N-C(7)-C(8) 96.6(4) and 99.3(4)°, and O(2)-S-N-lp 173.7(3) and 2.9(3)° for the two molecules of the asymmetric unit, resp.). In the latter case, the N-atom is practically planar with a lone pair almost symmetrically distributed on both π faces.

⁷) For a rationalization of the high diastereoselectivity observed in the presence of hypothetically unchelated dicoordinated (-)-1a during its [4 + 2] cycloaddition to cyclopentadiene, see [9].

⁸⁾ For PM3 calculations showing the higher reactivity of the syn-s-cis conformer during the [3 + 2] cycloaddition of (-)-1a, see footnote 41 in [9]. This hypothesis better explains the observed stereoselectivity by competition with an anti-s-cis C(α)-re approach on the sterically more hindered face, shielded by the pseudoaxial t-Bu and O(2) substituents [17]. This is well highlighted by the [3 + 2] cycloadditions of acetonitrile and 2,2-dimethyl propiononitrile oxides to (-)-1a (92% d.e.; 96% d.e., [2]) and (-)-2a (80% d.e.; 90% d.e., [5]), respectively.

⁹) For more precise PM3 calculations of [4 + 2] transition states of (-)-1a, see [9].

	(-) -1a	(+)-1b
Formula	C ₁₄ H ₁₇ NO ₃ S	$C_{12}H_{13}NO_{3}S$
Mol. wt.	279.4	251.3
Crystal system	orthorhombic	orthorhombic
Space group	P212121	P212121
a [Å]	10.5994(7)	7.274(2)
b [Å]	11.0282(10)	12.101(2)
c [Å]	12.2262(9)	13.943(4)
V [Å ³]	1429.2(2)	1227.3(5)
Z 4	4	4
F(000)	592	528
$D_{\rm c} [{\rm gr} \cdot {\rm cm}^{-3}]$	1.30	1.36
$\mu(MoK_{\alpha}) \ [mm^{-1}]$	0.219	0.247
$((\sin\theta)/\lambda)_{\max}$ [Å ⁻¹]	0.64	0.58
No. measured reflections	1824	1147
No. observed reflections	1630	916
Criterion for observed	$ F_{\rm o} > 2\sigma(F_{\rm o})$	$ F_{\rm o} > 2\sigma(F_{\rm o})$
Refinement (on F)	full-matrix	full-matrix
No. parameters	172	154
Weighting scheme	$\omega = 1/(\sigma^2(F_0) + 0.0005(F_0^2))$	$\omega = 1/(\sigma^2(F_o) + 0.0006(F_o^2))$
Max. and min. $\Delta \rho [e \cdot \text{\AA}^{-3}]$	0.27, -0.30	0.34, -0.38
S	1.34	1.23
$R, \omega R$	0.054, 0.060	0.063, 0.054

Table 2. Summary of Crystal Data Intensity Measurement, and Structure Refinement for (-)-la and (+)-lb

intensities were measured at r.t. on *Philips-PW-1100* and *Nonius-CAD4* diffractometers with graphite-monochromated MoK_x radiation ($\lambda = 0.71069$ Å). Data were corrected for *Lorentz* and polarization effects but not for absorption. The structures were solved by direct methods using MULTAN 87 [20], all other calculations used XTAL [21] system and ORTEP [22] programs. All H-atoms were observed and contributed to F_c calculations but were not refined. *Table 2* shows details of the data collections and refinements. Crystallographic data have been deposited with the *Cambridge Crystallographic Data Center*, University Chemical Laboratory, 12 Union Road, Cambridge CB2 1EZ, England, as supplementary publication No. CCDC-10/54.

REFERENCES

- a) W. Oppolzer, M. Wills, M. J. Kelly, M. Signer, J. Blagg, *Tetrahedron Lett.* 1990, 31, 5015; b) W. Oppolzer, B. M. Seletsky, G. Bernardinelli, *ibid.* 1994, 35, 3509.
- [2] W. Oppolzer, A. J. Kingma, S. K. Pillai, Tetrahedron Lett. 1991, 32, 4893.
- [3] J. Jurczak, T. Bauer, C. Chapuis, 'Houben-Weyl, Stereoselective Synthesis', Eds. G. Helmchen, R. W. Hoffmann, J. Mulzer, and E. Schaumann, Thieme Verlag, Stuttgart, 1995, Vol. E21c, p. 2735, 2905; M. Cinquini, F. Cozzi, *ibid.*, 2953; W. Oppolzer, 'Comprehensive Organic Synthesis', Eds. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, Vol. 5, p. 315.
- [4] W. Oppolzer, I. Rodriguez, C. Starkemann, E. Walther, Tetrahedron Lett. 1990, 31, 5019.
- [5] D. P. Curran, B. H. Kim, J. Dougherty, T. A. Heffner, Tetrahedron Lett. 1988, 29, 3555.
- [6] W. Oppolzer, C. Chapuis, G. Bernardinelli, Helv. Chim. Acta 1984, 67, 1397.
- [7] W. Oppolzer, G. Poli, C. Starkemann, G. Bernardinelli, Tetrahedron Lett. 1988, 29, 3559.
- [8] B. H. Kim, D. P. Curran, Tetrahedron 1993, 49, 293.
- [9] C. Chapuis, J.-Y. de Saint Laumer, M. Marty, Helv. Chim. Acta 1997, 80, 146.
- [10] W. Oppolzer, M. Wills, C. Starkemann, G. Bernardinelli, Tetrahedron Lett. 1990, 31, 4117.
- [11] W. Oppolzer, presented at the 'First Anglo-Normand Organic Chemistry Colloquium', Rouen, France, May 1991.
- [12] W. Oppolzer, C. Chapuis, G. Bernardinelli, Tetrahedron Lett. 1984, 25, 5885.

- [13] J. F. P. Andrews, A. C. Regan, J. D. Wallis, D. C. Povey, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1992, 48, 2196; N. Shida, C. Kabuto, T. Niwa, T. Ebeta, Y. Yamamoto, J. Org. Chem. 1994, 59, 4068; G. Riehs, E. Urban, H. Völlenkle, Tetrahedron 1996, 52, 8725.
- [14] T. Bauer, C. Chapuis, J. Kiegiel, J. W. Krajewski, K. Piechota, Z. Urbanczyk-Lipkowska, J. Jurczak, Helv. Chim. Acta 1996, 79, 1059.
- [15] G. Bernardinelli, unpublished results.
- [16] C. Chapuis, Ph. D. Thesis, Université de Genève, 1984, No. 2144, p. 46, 51; W. Oppolzer, I. Rodriguez, J. Blagg, G. Bernardinelli, *Helv. Chim. Acta* 1989, 72, 123.
- [17] K. S. Kim, B. H. Kim, W. M. Park, S. J. Cho, B. J. Mhin, J. Am. Chem. Soc. 1993, 115, 7472.
- [18] C. Chapuis, P. Rzepecki, T. Bauer, J. Jurczak, Helv. Chim. Acta 1995, 78, 145.
- [19] C. Chapuis, J.-Y. de Saint Laumer, presented at the 'IXth ESOC', Warsaw, Poland, June 1995; T. Bauer, C. Chapuis, A. Jezewski, J. Kozak, J. Jurczak, *Tetrahedron Asymm.* 1996, 7, 1391.
- [20] P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, M. M. Woolfson, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (1987), Universities of York, England, and Louvain-la-Neuve, Belgium.
- [21] S. R. Hall, H. D. Flack, J. M. Stewart, XTAL3.2 User's Manual (1992), Universities of Western Australia and Maryland, USA.
- [22] C. K. Johnson, ORTEP II; Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.